Dr. Oren Ram - DNA methylation patterns expose variations in enhancer-chromatin modifications during embryonic stem cell differentiation

Cellular dynamics are underlined by numerous regulatory layers. The regulatory mechanism of interest in this work are enhancers. Enhancers are regulatory regions responsible, mainly, for increasing the possibility of transcription of a certain gene. Enhancers are marked by two distinct chemical groups-H3K4me1 and H3K27ac on the tail of histones. Histones are the proteins responsible for DNA packaging into condensed chromatin structure. In contrast, DNA methylation is a chemical modification often found on enhancers, and is traditionally associated with repression. A long-debated question revolves around the functional relevance of DNA methylation in the context of enhancers. Here, we combined the two regulatory layers, histone marks and DNA methylation, to a single measurement that can highlight DNA methylation separately on each histone mark but at the same genomic region. When isolated with H3K4me1, enhancers showed higher levels of methylation compared to H3K27ac. As we measured the same genomic locations, we show that differences of DNA methylation between these marks can only be explained by cellular heterogeneity. We also demonstrated that these enhancers tend to play roles in stem cell differentiation and expression levels of the genes they control correlate with cell-to-cell variation.

Read the paper

 

Illustration